Performance of Mammography Screening in The National Breast Cancer Screening Program: A Retrospective Cohort Study

March 2014
Acknowledgement

We would like to express our sincere gratitude to all those who helped in the preparation of this evaluation report.

First, we would like to thank the Director General of Primary Health Care, Dr Assad Ramlawi, for his full support throughout the study. Special thanks are due to the Directors of Palestinian Health Information Centers in the West Bank and the Gaza Strip: Dr Jawad Bitar- Director of the Palestinian Health Information Center/ West Bank; Dr Usama Balawi- Director of the Palestinian Health Information Center/Gaza Strip; and Dr Swasan Hammad - Director of Women’s Health /Gaza, for their continuous help and support.

We also extend our thanks to Usama Najjar, Director of the MoH referral department. We are grateful to the Director of the Nursing Department, Ilham Shamasneh, and the Head of the Mother and Child Division of MoH, Taghrid Hijaz, for their support throughout the study.

We thank all the directors of directorates who facilitated our field visits. We are also grateful to the supervisors and head nurses who followed up women with suspected cases of cancer. We are indebted to all the mammography technicians and doctors who read mammography films for participating in interviews and providing a wealth of information on how to improve the screening mammography program.
TABLE OF CONTENTS

Executive Summary 5

I. Background 7
 I.A. Burden of breast cancer in Palestine 8
 I.B. Mammography Screening 8
 I.C. Ministry of Health National Mammography Screening Program 10

II. Study Objectives 10

III. Methodology 11
 III.A. Outcome measures 11
 III.B. Data collection 12
 In the West Bank 12
 In the Gaza Strip 14
 Protection of human subjects 16

Study Findings 16

I. Challenges faced by mammography technicians, supervisors, and doctors who read the mammogram films 16

West Bank

Results of the field visits

Gaza Strip 17

II. Rates of breast cancer detection, false-positive cases, timeliness, and types of cancer detected 17

West Bank

Gaza Strip 20

Study Limitations 20

Study Conclusions 20

Study Recommendations 21

I. West Bank 21
 I.A. Primary Health Care 21
 I.B. Secondary Health Care 24

II Gaza Strip 24

Annex I Survey of mammography technicians 27
Executive Summary

Globally, more women are being diagnosed with and dying from breast cancer. To combat breast cancer, WHO recommends earlier detection and access to treatment at an early stage. The Ministry of Health (MoH) introduced free mammogram screening for breast cancer for women aged 40 and above and for younger women at high risk of breast cancer in 2008-2009 in the West Bank and in 2010 in the Gaza Strip. To evaluate national screening mammography, we tracked abnormal screening results in 2011 for health outcomes. Data were pooled from mammogram registries in the 12 district primary health care clinics in the West Bank; the MoH clinic in the Gaza Strip; Cancer and Death registries at the Palestinian Health Information Centre (PHIC); the Referral Department of MoH; interviews with all mammography technicians and supervisors; MoH doctors/radiologists who read the mammogram films; and follow up calls to all women with abnormal screening results not found in either registry.

Using a two year follow-up window from the time of the mammography, we examined the performance of the screening program in several ways:

- The challenges faced by mammography technicians;
- The rates of cancer detection (number of cancers detected per 1000 screening mammographs);
- False-positive rates (number of women with abnormal screening results without breast cancer divided by the total number of cases with abnormal screening results);
- The timeliness of abnormal screening and diagnostic follow up (time to read the mammogram films);
- The types of cancer detected;
- The completeness of cancer registries of notified cancer cases in the West Bank and the Gaza Strip.

In the West Bank, there was shortage of films, especially of the larger size. There was also a shortage of physicians/radiologists that led to delays in reading mammography films; the service varied between 1-60 days. There was inconsistency in the screening mammography program in the twelve districts in terms of outreach; clinical breast examinations; referrals; time taken to read the mammogram films; giving the mammogram films back to the screened women; the follow-up of screened women;
the existence of screening mammography guidelines and guidelines for referrals of suspected cancer cases; and storage of patients’ files. Only two clinics kept patient files (own initiative); the others kept the mammography reports for normal cases in one file, and suspected cases in another file.

Four out of the 12 mammography clinics are located in old buildings with poor ventilation and lacks hygiene: in Nablus, Salfit, Tulkarem and Tubas. A lack of preventive maintenance resulted in frequent breakdowns of mammography machines in many clinics and interrupts the screening program. In most districts, the follow up of women with abnormal screening results was inadequate, primarily due to poor communication between primary and secondary health care providers as there was no feedback on women referred for diagnosis.

Of the 6746 women screened, 6.2% (417/6746) cases of cancer were suspected. About one third (136/417) of the suspected cases were diagnostic (for women with signs and symptoms). Of the remaining women with suspected cancer (281 screening cases), 14.6% (41/281) were diagnosed with breast cancer. Assuming the remaining 6610 (6746 total screened subtracting the 136 diagnostic cases) screened women were asymptomatic, the rate of detection by mammography was 6.2 per 1000 (41/6610). Of the 41 diagnosed cases, only 21(21/41=51%) were found in the cancer registry, with the stage of the cancer stated in only one case. The absence of stage of cancer in 20 out of the 21 diagnosed cases found at the Cancer Registry prevented us from examining the impact of screening on women’s morbidity.

In the Gaza Strip, there is only one mammography machine. They maintained patient files and the mammogram films were read the following day. Guidelines existed for screening mammography and for referrals of suspected breast cancer cases. Of the 699 women screened, 2.4% (17/699) were suspected cases. Four of the 17 suspected cases were confirmed to have breast cancer. The rate of detection by mammography was 5.7 per 1000 (4/699). Of the four confirmed cases, three were found at the cancer registry and one case was found in the referral department.

In conclusion, this is an important initiative despite its very limited resources. Further support is required in the following areas:

- To develop screening mammography protocols for referrals of suspected cancer cases;
- To improve infrastructure;
• To review medical records and mammography registry;
• To train existing practitioners and additional physicians/radiologists to speed up the process of reading results;
• To extract diagnostic cases from primary health care for timely referral to secondary health care facilities;
• To improve the completeness and quality of the Cancer Registry by better communications between surgeons, oncologists and pathologists to determine the stage of cancer;
• To ensure that cases of cancer are notified;
• To improve the public education component in the current national screening program in line with WHO recommendations on appropriate widespread coverage of high-risk groups.¹

I. Background

Breast cancer is the second most common cancer in the world, and by far the most frequent cancer among women with an estimated 1.67 million new cancer cases in 2012 (25% of all cancers)². The incidence of breast cancer is increasing in most regions of the world; between 2008 and 2012, breast cancer rates increased by more than 20% and the mortality rate increased 14% over the same period to 522,000 deaths in 2012. Incidence rates remain highest in more developed regions, but mortality is relatively much higher in less developed countries due to a lack of early detection and access to treatment facilities.³ In Western Europe, the incidence of breast cancer is more than 90 new cases per 100,000 women annually, compared with 30 per 100,000 in Eastern Africa. Yet, breast cancer mortality rates in these two regions are almost identical at about 15/100,000.⁴

The most common types of breast cancer are ductal carcinoma and lobular carcinoma. Invasive breast cancer occurs when breast cancer spreads from the location where it starts in the breast ducts or lobules to surrounding normal tissue.⁵ Women at risk of breast cancer include those with a personal history of breast cancer; a family history of breast cancer; received radiation treatments to chest as a child or young adult;

² http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx
³ http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx
⁴ ibid
⁵ http://www.cancer.gov/cancertopics/types/breast
obesity; started periods below the age of 12 or began menopause at an older age; have never been pregnant; have their first child after the age of 35; taking hormone replacement therapy for menopause, and older age. Incidence increases with age and the probability of a woman developing breast cancer in her forties is 1 in 69; in her fifties is 1 in 38; and in her sixties is 1 in 27.

I.A. Burden of breast cancer in Palestine

Based on the MoH Annual Report 2013, non-communicable diseases are among the five top leading causes of death and cancer was ranked the second. In 2012, the incidence of cancer in the West Bank was 64.2 per 100,000, while in the Gaza Strip, the incidence of cancer was 63 per 100,000. Breast cancer ranked first among deaths from cancer among women in both the West Bank and the Gaza Strip, where 22% (95/437) and 27% (82/306) respectively of cancer deaths were due to breast cancer.

I.B Mammography screening

A cornerstone of breast cancer control is early detection to improve breast cancer outcomes and survival. Diagnostic mammograms are used to check for breast cancer after a lump, discharge or other sign or symptom of the disease has been discovered, while screening mammograms are used to check for breast cancer in women who have no signs or symptoms of the disease. Screening mammography is used to detect breast cancer in the pre-clinical stage, thereby reducing disease-associated morbidity and mortality.

Potential harm from screening mammography may result from false-negative results (when mammograms appear normal even though breast cancer is present; screening mammograms miss about 20% of breast cancers that are present at the time of screening, mostly because of high breast density); false-positive results (occur when radiologists decide mammograms are abnormal, but no cancer is actually present), overtreatment, and radiation exposure. Screening mammograms can detect cancers

10 Palestinian Health Information Center/Ministry of Health. Gaza Strip.
and cases of ductal carcinoma in situ (DCIS). These are non-invasive tumours in which abnormal cells that may become cancerous build up in the lining of breast ducts and require treatment. However, they can also find cancers and cases of DCIS that will never cause symptoms or threaten a woman’s life, leading to “over-diagnosis” of breast cancer. Of all breast cancers detected by screening mammograms, up to 54% are estimated to be the result of over-diagnosis. Treatment of the latter cancers and cases of DCIS is unnecessary and leads to “overtreatment.” Overtreatment exposes women unnecessarily to the adverse effects associated with cancer therapy.12

The question whether breast cancer screening does more harm than good has been debated extensively. In a meta-analysis of 11 randomized trials, the relative risk of breast cancer mortality for women invited to screening compared with controls was 0·80 (95% CI 0·73-0·89), which is a relative risk reduction of 20%.13 Based on another review study of seven clinical trials, if we assume that screening reduces breast cancer mortality by 15% and that over-diagnosis and overtreatment is at 30%, it means that for every 2000 women invited for screening throughout 10 years, one will avoid dying of breast cancer and 10 healthy women who would not have been diagnosed without screening will be treated unnecessarily. Furthermore, more than 200 women will experience significant psychological distress, including anxiety and uncertainty for years, as a result of a false-positive finding.

In Sweden, findings from a retrospective study of the impact of screening on breast cancer mortality following thirteen years of the introduction of screening mammography found that breast cancer mortality decreased by 16% in women aged between 40-69 years.14 However, at least part of the observed reduction in mortality is due to improved treatment. In Norway, the availability of screening mammography from 1986 to 2005 for women aged 50 to 69 years was associated with a reduction in the death rate from breast cancer, but the screening itself accounted for only about a third of the total reduction (7.2 deaths per 100,000 person-years).15

In a review study of the incidence of advanced breast cancer in areas where screening mammography had taken place for at least seven years with minimum participation of 60% and where population based registration of advanced breast cancer existed, trends in the incidence of advanced breast cancer did not support a substantial role for screening in the decrease in mortality.16 In another review study of the relationship between tumour sizes and stages and the reported effects on breast cancer mortality with and without screening in trials and observational studies, the average tumour sizes in all the trials suggested only a 12% reduction in breast cancer mortality, which agrees with the 10% reported in the most reliable trials. Recent studies of tumour sizes and stages show that screening has not lowered the rate of advanced cancers. Similar findings were published from recent observational studies of breast cancer mortality that failed to find an effect of screening.17

\section*{I.C. MoH National Screening Mammography Program}

In 2008-2009, the MoH in the West Bank introduced the free mammogram screening for breast cancer for women aged 40 and above and for younger women at high risk of breast cancer in the 12 districts. Women between the age of 40-50 were to be screened every other year and once a year for those over the age of 50. In 2010, the MoH in the Gaza Strip started free screening mammography with one mammography machine in Gaza city. In Gaza, women who attended for screening fell into three categories: the screening group from the general population, but mostly teachers; those with symptoms (diagnostic group); and new female employees as part of a medical examination.

\section*{II. Study Objectives}

The overall objective of the study is to examine the performance of the national mammography screening programs in the West Bank and the Gaza Strip. The specific objectives are as follows:

1. To examine the challenges faced by mammography technicians, supervisors and doctors/radiologists who read the mammogram films;

17 Gotzsche Pc Fau - Jorgensen KJ, Jorgensen KjFau - Zahl P-H, ZahlPhFau - Maehlen J and Maehlen J: Why mammography screening has not lived up to expectations from the randomised trials.
2. To examine cancer detection rates;
3. To examine false-positive rates;
4. To examine the timeliness of responses to abnormal screening and diagnostic follow up;
5. To examine the stages of cancers detected by screening;
6. To examine the quality and completeness of Cancer Registries in the West Bank and Gaza Strip.

III. Methodology

This study was carried out in partnership with MoH General Directorate of Primary Health Care and Palestinian Health Information Centres (PHIC) in the West Bank and Gaza Strip between January and September 2013. Using a two year follow-up window from the time of mammography, we examined the performance of the screening program by tracking cases with abnormal screening results in 2011. Data were collected from mammogram registries at the 12 district primary health care clinics in the West Bank and the MoH clinic in the Gaza Strip; cancer and death registries at the (PHIC) in the West Bank and the Gaza Strip; the Referral Department of MoH; interviews with 15 mammography technicians, 12 supervisors, and three MoH doctors who read the mammogram films; in addition to follow up calls to women with abnormal screening results not found in either registries.

III.A Outcome measures

Cancer detection rates: number of cancers detected per 1000 screened women.

False-positive rates: number of women with abnormal screening results without breast cancer divided by the total number of cases with abnormal screening results.

Timeliness of abnormal screening and diagnostic follow up: time needed to read the mammogram films.

Stages of cancers detected: based on the stage of cancer indicated in the cancer registries.
Completeness of Cancer Registry: the percentage of screened cases diagnosed in the Cancer Registries (diagnosed cases found in the cancer registry divided by the total number of diagnosed cases among those with abnormal screening results in 2011).

Quality of Cancer Registry: The stage of cancer identified as a notified diagnosed case to determine the type of cancers detected by mammography screening.

Challenges faced by mammography technicians, supervisors and doctors who read the mammogram films: A structured questionnaire (Annex I) was used for mammography technicians in addition to interviews with supervisors and doctors to examine challenges in the National Mammography Screening Program in terms of workload; availability of mammogram films of different sizes; the functioning of the mammogram machine; presence of mammography screening guidelines and guidelines for referrals; and follow up on women with abnormal screening results.

III.B. Data collection

In the West Bank

- From the mammogram registries in the district primary health care clinics, district nurses/mammography technicians identified cases with abnormal screening results in 2011.
- Using patients’ IDs, a staff from the cancer registry at PHIC searched for cases with suspected breast cancer in the Cancer Registry and in the Death Registry.
- Supervisors from each district called the women with abnormal screening results who were not found in either registries (see the chart next page).
Study Procedure in the West Bank

Clinic registry at MoH mammogram clinics

A list of suspected cases of breast cancer and those referred for biopsy

Checked their IDs at the PHIC Cancer Registry

- The IDs were there
- The IDs were not there

Asked for Cancer notification forms

Check in death registry

- The women were registered as dead
 - *Ask for the death notification forms*
- Not

- Called women

Checked underlying cause of death

Checked the quality and completeness of Cancer Registry data
In the Gaza Strip

- From the mammogram registry in the primary health care clinic in Gaza city, the Director of the Cancer Registry at PHIC collected the IDs of all women with abnormal screening results in 2011.
- Using patients’ IDs, staff from the cancer registry at PHIC searched for all women with abnormal screening results in the cancer registry, in the oncology clinic, and in the PHIC Death Registry.
- Women with suspected breast cancer who were not found in either Registry, nor in the oncology clinic, were followed up with a phone interview (see the chart next page).
Study Procedure in the Gaza Strip

Clinic registry at MoH mammogram clinics (PHC)

A list of suspected cases of breast cancer

Checked their IDs at the Cancer Registry at PHIC

The IDs were there

The IDs were not there

Asked for Cancer notification forms

A staff from PHIC will check their IDs at the oncology clinic

Women were not found

Women found

Checked in Death Registry

Asked for a copy of the report

The women were found dead

Women not found there

Asked for the death notification forms

Check underlying cause of death

Called women to find out about their cancer status

Check the quality and completeness of Cancer Registry data
Protection of human subjects

Data were collected by reproductive health nurses/ Mother and Child Health (MCH) supervisors and mammography technicians. The mammography technicians/ supervisors called the women who were not found in either registries. To protect confidentiality, MoH employees collected the data and supervisors called women for follow up. Once data were collected and verified, it was de-identified and given to the study Principle Investigator for analysis. Recruited technicians and supervisors received training in human subject protection prior to the data collection. The Helsinki Human Subject Protection Committee approved the study on February 2013.

Study Findings

I. Challenges faced by mammography technicians, supervisors and doctors who read mammogram films.

I.A. West Bank

At the time of data collection, only 5 of the 12 clinics had mammography screening guidelines and only one clinic conducted health education outreach to invite women for screening (Figure 1).

Based on the technicians’ reports, an average of 3-18 screening tests were done daily, the highest number being in Tulkarem (Figure 2).

![Figure 1: Availability mammogram screening guidelines, films kept at the clinic, referral required, patient file, outreach, clinical breast exam, MoH, West Bank, 2011](image-url)
II. Rates of cancer detection, false-positive cases, timeliness of abnormal screening and diagnostic follow up, and types of cancers detected

West Bank

II.A Cancer detection rates

Of the 6746 screened women, 6.2% (417/6746) had abnormal screening results. About one third (136/417) of the suspected cases were diagnostic (for women with signs and symptoms). Of the remaining women with suspected cancer (281 screening cases), 14.6% (41/281) were diagnosed with breast cancer. Assuming the remaining 6610 women screened (total of 6746 screened subtracting the 136 diagnostic cases) were asymptomatic, the rate of detection by mammography was 6.2 per 1000 (41/6610). The detection rate is in concordance with other screening mammography programs in other countries.18 There was significant variability in the number of screened women and detection rates by district (Figure 3). Rates of detection of breast cancer among screened women were from 0 per 1000 in Qalqylia,
Jericho and south Hebron to 13.7 per 1000 in Jenin. Based on previous studies, the detection rate was 2.7 and 3.9 per 1000 in screened women aged 40-49 and 50-59 respectively. The high detection rate of mammography screening may be explained by the possibility that not all screened cases in our study were asymptomatic.

As shown in Figure 4, five of the 41 women diagnosed with breast cancer were below the age of 40. About 44% of women diagnosed with breast cancer were below the age of 50, which is in line with studies from Egypt and other Arab countries that indicate that 50% of breast cancers are seen in women below the age of 50 years.

![Figure 3: Number of screened women, women with suspected cancer, and women diagnosed with cancer](image)

![Figure 4: Age distribution of screened women diagnosed with breast cancer](image)

19 Miller Ab Fau - Baines CJ, Baines CjFau - To T, To T Fau - Wall C and Wall C: Canadian National Breast Screening Study: 2. Breast cancer detection and death rates among women aged 50 to 59 years.

II.B Rates of false-positive cases
The rate of false-positive cases among women with abnormal screening results was 85.4% (240/281). The rates of false-positive cases varied by district; from 0% in Nablus to 100% in Qalqylia, Jericho and South Hebron (Figure 3).

II.C. Timeliness of abnormal screening and diagnostic follow up
Due to an insufficient number of doctors, there are only four doctors to read the mammogram films in the 12 districts; the median time to read the mammogram films was 25 days. The time required to read the mammogram films varied significantly by district, ranging from one day to 60 days (Figure 5)

![Figure 5: Waiting time for mammography report by district, MoH, West Bank, 2011](image)

II.D. Stages of cancers detected
Among the 21 cases of cancer detected found in the cancer registry, only one has stage of cancer. As a result, we were unable examine if the breast cancers were detected at an early stage.

II.E. Completeness of Cancer Registry
Of the 41 diagnosed cases, only 21 (21/41=51%) were found in the Cancer Registry.
Gaza Strip

II.A Rate of detection of breast cancer
In 2011, 699 women were screened and 17 suspected cases of cancer were detected. Four of the 17 suspected cases were confirmed to have breast cancer. The detection rate by mammography was 5.7 per 1000 (4/699).

II.B Rate of false-positive cases
The rate of false-positive cases in the Gaza Strip was 76.5% (13/17).

II.C. Timeliness of abnormal screening and diagnostic follow up
As there was only one mammography machine in the Gaza Strip, it took one day to read the mammogram film.

II.D. Stages of cancer detected
Of the four cases of cancer detected in the abnormal screening results, three women were alive and one had died. Of the three cancers detected, two cases were at stage I and one case had an ‘unknown’ stage of cancer.

II.E. Completeness of cancer registry
Of the four cases diagnosed, three were found in the Cancer Registry.21

Study Limitations
We were unable to evaluate the effectiveness of mammography screening in terms of the stages of cancers detected due to incomplete information in the cancer registry. We only followed up women with abnormal screening results. Further study is needed in future to follow up women with negative screening results to examine the proportion of false-negative results.

Study Conclusions
The national mammography screening program needs further support in the following areas:
\begin{itemize}
 \item To develop screening mammography guidelines and guidelines for referrals of suspected cancer cases;
 \item To improve infrastructure;
\end{itemize}21 The patient who had died was found in the Death Registry. According to the death notification form, the underlying cause of death was cardiovascular arrest and hypertension; there was no mention of breast cancer.
• To review medical records and mammography registry; need to review medical records for risk factors for breast cancer;
• To train existing practitioners and additional physicians/radiologists to speed up the process of reading results;
• To extract diagnostic cases from primary health care for timely referral to secondary health care facilities;
• To improve the completeness and quality of the cancer registry by better communications between surgeons, oncologists, and pathologists to determine the stage of cancer;
• To enforce cancer notification;
• To improve the public education component in the current national screening program in line with WHO recommendations on appropriate widespread coverage of high-risk groups. The large proportion of false-positive cases in most districts may indicate that the screening program is not reaching women at risk.

Study Recommendations

I. West Bank

I.A. Primary Health Care

Raise awareness and improve outreach

A high priority of the World Health Organization (WHO) cancer control program is the outreach approach.\(^{22}\) To improve outreach, it is crucial to increase awareness, address women’s fears, and reach women at risk. WHO emphasizes the importance of appropriate widespread coverage of high-risk groups as opposed to repetitive screening of low-risk groups for screening to be effective. Breast cancer awareness campaigns are needed to emphasize the benefits of early detection by overcoming stigmas and spreading awareness of the scientific fact that breast cancer in its early stages can be cured. Campaigns should be directed towards women as well as husbands, who should be asked to encourage their wives to enrol in screening campaigns.\(^{23}\)

Ensure regular clinical breast examinations in addition to mammography screening

Based on the National Cancer Institute recommendation, a high-quality mammogram and a clinical breast examination on a regular basis are the most effective methods of early detection. Some cancers cannot be detected by a mammogram, but may be found by a clinical breast examination.24

Improve follow up of screened women

To accurately measure the quality and impact of the breast cancer screening process, it is critical to ensure tracking of patients with abnormal mammography findings.

1. Review of women’s files and mammography registries.

A review of current women’s files is a crucial step in the overall task of prediction and precise disease diagnosis. Important data that should be part of the medical records are as follows:25
\begin{itemize}
 \item history of pregnancies and childbirth;
 \item last date, type and result of previous individual cancer screening (mammography, pap smear etc.);
 \item family history of breast cancer;
 \item smoking history;
 \item medical history (i.e. steroids, blood pressure medication, anti-inflammatory medication etc.);
 \item frequent co-morbidities (type 2 diabetes, cardiovascular disease, and depression).
\end{itemize}

2. Better management of mammogram films

Clear guidelines are required as to whether the films should be given to the women screened or stored at the clinic. Assuming there is a location for storage in an adequately ventilated area, an archive system must be developed to facilitate the retrieval of films for follow up.

\begin{flushright}
24 National Institute Of Health.\url{http://www.cancer.gov/cancertopics/factsheet/detection/mammograms}\\
\end{flushright}
Enhance management of cases with breast symptoms

In most clinics reading mammography films, no priority was given to cases with existing symptoms. This may impact early detection and prognosis, especially in districts where there is a long wait for the mammography report and when women do not return to check the results. Therefore, it is crucial to extract cases with existing breast symptoms for timely referral to secondary health care facilities.

Improve infrastructure

1. To renovate the mammography clinics in Nablus, Salfit, Jericho and Tubas.
2. To enforce on regular maintenance of mammography machines. According to the technicians’ reports, there is no regular maintenance for old machines and service may be interrupted for several months when a machine breaks down.
3. To provide films of different sizes; many clinics complained of a shortage of large films and had to use small ones, leading to a risk that some parts of the breasts may not be scanned. In some clinics, there is a shortage of films and the technicians decided to save them purely for women with symptoms. This basically means that screening is no longer taking place.
4. To provide a comprehensive screening service that will ensure that women screened are not lost in the system and to achieve the objective of screening, which is early detection of breast cancer. In addition to mammography screening, we recommend additional ultrasound screening tests in MoH clinics. Based on technicians’ reports, many women could not afford the expenses of having an ultrasound conducted outside the MoH, while many women were not followed up when referred for ultrasound. There is only one ultrasound screening service in Ramallah directorate.

Build capacity

1. To train one or two MoH physicians in each district on mammography reading to reduce the waiting times for mammography reports.
2. To train one or two MoH physicians in each district on performing breast ultrasound examinations, assuming that the MoH can afford ultrasound screening in addition to the breast cancer mammography screening program.
3. To improve on-the-job training for mammography technicians. Based on statements by technicians who undertook training at Beit Jala hospital, there
was no follow up to their training or evaluation of their work. The training periods reported varied in length between 0-4 months. Many of the technicians interviewed requested more training and feedback on their work.

I.B. Secondary Health Care

Build capacity

To improve follow up of women screened positive (women with abnormal screening results), and to train one or two MoH hospital physicians in each district to perform needle biopsy.

Improve detection and management of breast cancer by pathologists and hospitals, through developing.

1. Better communication between pathologists, oncologists and surgeons to determine the stage of cancer.
2. Guidelines for pathologists and ultrasound technicians to refer women to oncologists first rather than to surgeons to prevent an unnecessary mastectomy from being performed.
3. Legislation to enforce the notification of all cases of cancer.
4. Legislation to require that the cancer notification form is completed fully before being sent to PHIC.

II. Gaza Strip

Improve infrastructure

1. To provide additional mammography machines to cover all five districts in the Gaza Strip and enable national mammography screening. Under the present system, the target population is mainly made up of teachers and is confined to residents of Gaza city.
2. To enforce regular maintenance of the mammography machine. Based on the technician’s report, there is no regular maintenance of old machines and the service is interrupted when the machine breaks down, which can last for up to five months.
Build capacity

To improve on-the-job training for mammography technicians. Based on technicians’ reports, many received short training in mammography screening without followup and feedback on their performance and quality of images taken.

Raise awareness and expand outreach

To expand outreach to increase awareness, address women’s fears, and reach women at risk. Target women through awareness campaigns, not only teachers.
البروتوكولات

<table>
<thead>
<tr>
<th>لا يعرف</th>
<th>لا</th>
<th>الى حد ما</th>
<th>نعم</th>
</tr>
</thead>
<tbody>
<tr>
<td>14. هل لديك دليل مكتوب لإجراء تصوير الثدي الشعاعي (mammography screening) (guidelines) (امكانية المشاهدة وتوثيقها)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. هل لديك دليل (Guidelines) لتحويل الحالات المتوقعة اصابتها بسرطان الثدي (امكانية المشاهدة وتوثيقها)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. ان تقوم بتحويل الحالات المتوقعة اصابتها : 0 قسم الجراحة 0 قسم السرطان 0 مختبر (Histopathology)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. هل تستلم تغذية راجعة عن الحالات المفصلة</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. من يزودك باللغزنة الراجعية: 0 المريض 0 قسم الجراحة 0 قسم السرطان 0 مختبر (Histopathology)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. هل تعتقد أن التغذية الراجعية هامة</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. إذا كانت اجابة السؤال السابق نعم، لماذا؟</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21. هل تعتقد أن التغذية الراجعية دقيقة؟</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22. كيف يتم الحصول على التغذية الراجعية: 0 بالهاتف 0 مكتوب 0 من خلال متابعة الفني او أحد افراد الطاقم.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
أولاً: البيانات الشخصية:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>الجنس:</td>
<td>ذكر 0، أنثى 0</td>
</tr>
<tr>
<td>العمر:</td>
<td></td>
</tr>
<tr>
<td>المستوى التعليمي:</td>
<td>أقل من بكالوريوس 0، بكالوريوس 0، أعلى من بكالوريوس 0</td>
</tr>
<tr>
<td>التخصص:</td>
<td>طبيب 0، فني 0، غير ذلك 0</td>
</tr>
<tr>
<td>الوظيفة الحالية:</td>
<td>رئيس قسم 0، فني 0، غير ذلك 0</td>
</tr>
<tr>
<td>المستوى التعليمي:</td>
<td></td>
</tr>
<tr>
<td>المستوى التعليمي:</td>
<td></td>
</tr>
<tr>
<td>القيادة:</td>
<td></td>
</tr>
<tr>
<td>عدد سنوات الخبرة في وزارة الصحة:</td>
<td></td>
</tr>
<tr>
<td>عدد سنوات الخبرة في التصوير الشعاعي للثدي:</td>
<td></td>
</tr>
<tr>
<td>هل تلقيت أي برامج تدريبية حول التصوير الشعاعي للثدي؟</td>
<td>نعم 0، لا 0، لا أذكر</td>
</tr>
<tr>
<td>الجواهر الزمنية للتدريب:</td>
<td></td>
</tr>
<tr>
<td>مكان التدريب:</td>
<td></td>
</tr>
</tbody>
</table>

ثانيا: القوى البشرية:

<table>
<thead>
<tr>
<th></th>
<th>لا أعرف</th>
<th>لا</th>
<th>إلى حد ما</th>
<th>نعم</th>
</tr>
</thead>
<tbody>
<tr>
<td>هل تعتقد أن عدد الطاقم يعتبر كافي لعمل برنامج مسح الثدي الشعاعي؟</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>هل تحتاج إلى تدريب لإجراء فحص الماموغرام؟</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ما نوع التدريب الذي تعتقد أنك تحتاجه؟</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>يوجد تعليم مستمر للموظفين لتطوير مهاراتهم</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Annex I: Survey of mammography technicians

(استمارة الفنيين العاملين في برنامج مسح سرطان الثدي بالأشعة (ماموغرام))
عوامل مرتبطة بالنظام

<table>
<thead>
<tr>
<th>لا أعرف</th>
<th>نعم</th>
<th>إلى جدا ما</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. هل جهاز الماموغرام يعمل بشكل جيد؟</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. هل سبق ووقف الجهاز لفترة بسبب الأعطال؟</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. إذا سبق وتعطل الجهاز فكم الكادة الزمنية التي تعطلها؟</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. هل يوجد صيانة دورية للجهاز؟</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. هل لديك أفلام من مختلف الأحجام؟</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. هل يوجد نقص معين بأي نوع من الأفلام؟</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. هل يتم حفظ الأفلام في المركز؟</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. هل يتم اعطاءها للمريض بشكل روتيني؟</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. هل يتم قراءة نتائج الماموغرام في المركز؟</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. هل يتم انتقالها في مكان آخر في محافظة أخرى؟</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>لا أعرف</th>
<th>نعم</th>
<th>إلى جدا ما</th>
</tr>
</thead>
<tbody>
<tr>
<td>11. هل يتم اخبار المريضة في فترة محددة أن النتائج متاحة؟</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. هل يتم اخبار المريضة في فترة محددة أن النتائج متاحة؟</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. هل يمكنني الاتصال بالمركز في حالة طوارئ؟</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. هل هناك مواد خاصة بالتدريب الصحي في المركز؟</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. هل توجد أي مواد خاصة بالتدريب الصحي في المركز؟</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. هل توجد مواد خاصة بالتدريب الصحي في المركز؟</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>لا أعرف</th>
<th>نعم</th>
<th>إلى جدا ما</th>
</tr>
</thead>
<tbody>
<tr>
<td>17. هل توجد مواد خاصة بالتدريب الصحي في المركز؟</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. هل توجد مواد خاصة بالتدريب الصحي في المركز؟</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. هل توجد مواد خاصة بالتدريب الصحي في المركز؟</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. هل توجد مواد خاصة بالتدريب الصحي في المركز؟</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>لا أعرف</th>
<th>نعم</th>
<th>إلى جدا ما</th>
</tr>
</thead>
<tbody>
<tr>
<td>21. هل توجد مواد خاصة بالتدريب الصحي في المركز؟</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22. هل توجد مواد خاصة بالتدريب الصحي في المركز؟</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23. هل توجد مواد خاصة بالتدريب الصحي في المركز؟</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24. هل توجد مواد خاصة بالتدريب الصحي في المركز؟</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>لا أعرف</th>
<th>نعم</th>
<th>إلى جدا ما</th>
</tr>
</thead>
<tbody>
<tr>
<td>25. هل توجد مواد خاصة بالتدريب الصحي في المركز؟</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26. هل توجد مواد خاصة بالتدريب الصحي في المركز؟</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27. هل توجد مواد خاصة بالتدريب الصحي في المركز؟</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28. هل توجد مواد خاصة بالتدريب الصحي في المركز؟</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>لا أعرف</th>
<th>نعم</th>
<th>إلى جدا ما</th>
</tr>
</thead>
<tbody>
<tr>
<td>29. هل توجد مواد خاصة بالتدريب الصحي في المركز؟</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30. هل توجد مواد خاصة بالتدريب الصحي في المركز؟</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31. هل توجد مواد خاصة بالتدريب الصحي في المركز؟</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32. هل توجد مواد خاصة بالتدريب الصحي في المركز؟</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>لا أعرف</th>
<th>نعم</th>
<th>إلى جدا ما</th>
</tr>
</thead>
<tbody>
<tr>
<td>33. هل توجد مواد خاصة بالتدريب الصحي في المركز؟</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34. هل توجد مواد خاصة بالتدريب الصحي في المركز؟</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35. هل توجد مواد خاصة بالتدريب الصحي في المركز؟</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36. هل توجد مواد خاصة بالتدريب الصحي في المركز؟</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>لا أعرف</th>
<th>نعم</th>
<th>إلى جدا ما</th>
</tr>
</thead>
<tbody>
<tr>
<td>37. هل توجد مواد خاصة بالتدريب الصحي في المركز؟</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38. هل توجد مواد خاصة بالتدريب الصحي في المركز؟</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39. هل توجد مواد خاصة بالتدريب الصحي في المركز؟</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40. هل توجد مواد خاصة بالتدريب الصحي في المركز؟</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>